```% From Boyd & Vandenberghe, "Convex Optimization"
% Joëlle Skaf - 08/17/05
%
% Shows the equivalence of the following 3 problems:
% 1) Robust least-squares problem
%           minimize    sum_{i=1}^{m} phi(a_i'*x - bi)
%    where phi(u) = u^2             for |u| <= M
%                   M(2|u| - M)     for |u| >  M
% 2) Least-squares with variable weights
%           minimize    sum_{i=1}^{m} (a_i'*x - bi)^2/(w_i+1) + M^2*1'*w
%               s.t.    w >= 0
%           minimize    sum_{i=1}^{m} (u_i^2 + 2*M*v_i)
%               s.t.    -u - v <= Ax - b <= u + v
%                       0 <= u <= M*1
%                       v >= 0

% Generate input data
randn('state',0);
m = 16; n = 8;
A = randn(m,n);
b = randn(m,1);
M = 2;

% (a) robust least-squares problem
disp('Computing the solution of the robust least-squares problem...');
cvx_begin
variable x1(n)
minimize( sum(huber(A*x1-b,M)) )
cvx_end

% (b)least-squares problem with variable weights
disp('Computing the solution of the least-squares problem with variable weights...');
cvx_begin
variable x2(n)
variable w(m)
w >= 0;
cvx_end

disp('Computing the solution of the quadratic program...');
cvx_begin
variable x3(n)
variable u(m)
variable v(m)
minimize( sum(square(u) +  2*M*v) )
A*x3 - b <= u + v;
A*x3 - b >= -u - v;
u >= 0;
u <= M;
v >= 0;
cvx_end

% Display results
disp('------------------------------------------------------------------------');
disp('The optimal solutions for problem formulations 1, 2 and 3 are given');
disp('respectively as follows (per column): ');
[x1 x2 x3]
```
```Computing the solution of the robust least-squares problem...

Calling SDPT3: 168 variables, 80 equality constraints
------------------------------------------------------------

num. of constraints = 80
dim. of sdp    var  = 32,   num. of sdp  blk  = 16
dim. of socp   var  = 32,   num. of socp blk  = 16
dim. of linear var  = 64
dim. of free   var  = 24 *** convert ublk to lblk
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version  predcorr  gam  expon  scale_data
HKM      1      0.000   1        0
it pstep dstep pinfeas dinfeas  gap      prim-obj      dual-obj    cputime
-------------------------------------------------------------------
0|0.000|0.000|4.2e+01|5.2e+01|3.5e+05| 5.851405e-09  0.000000e+00| 0:0:00| chol  1  1
1|0.360|0.769|2.7e+01|1.2e+01|3.9e+04| 4.473318e+02 -7.905928e+02| 0:0:00| chol  1  1
2|1.000|0.928|1.5e-05|9.0e-01|4.7e+03| 1.899951e+03 -8.242295e+02| 0:0:00| chol  1  1
3|1.000|0.908|5.2e-06|9.0e-02|7.3e+02| 5.047691e+02 -1.675182e+02| 0:0:00| chol  1  1
4|0.853|0.639|1.2e-06|3.3e-02|2.4e+02| 1.027259e+02 -1.179279e+02| 0:0:00| chol  1  1
5|1.000|0.659|1.2e-07|1.1e-02|9.4e+01| 4.105725e+01 -5.028672e+01| 0:0:00| chol  1  1
6|0.907|0.338|8.8e-08|7.5e-03|6.1e+01| 2.537981e+01 -3.352707e+01| 0:0:00| chol  1  1
7|1.000|0.455|3.6e-08|4.1e-03|3.0e+01| 1.164002e+01 -1.750574e+01| 0:0:00| chol  1  1
8|0.980|0.788|1.7e-08|8.6e-04|5.7e+00| 5.277375e+00 -3.643333e-01| 0:0:00| chol  1  1
9|1.000|0.290|1.7e-09|6.1e-04|3.8e+00| 4.602353e+00  9.063127e-01| 0:0:00| chol  1  1
10|1.000|0.808|1.7e-09|1.2e-04|6.8e-01| 4.247054e+00  3.567457e+00| 0:0:00| chol  1  1
11|1.000|0.549|1.0e-10|5.3e-05|3.0e-01| 4.216729e+00  3.917884e+00| 0:0:00| chol  1  1
12|0.994|0.945|3.0e-11|2.9e-06|1.6e-02| 4.209843e+00  4.193738e+00| 0:0:00| chol  1  1
13|0.981|0.983|4.7e-12|4.8e-05|6.4e-04| 4.209708e+00  4.209439e+00| 0:0:00| chol  1  1
14|0.957|0.979|2.1e-13|1.9e-06|1.9e-05| 4.209705e+00  4.209700e+00| 0:0:00| chol  1  1
15|1.000|0.967|4.1e-15|5.7e-08|7.9e-07| 4.209705e+00  4.209705e+00| 0:0:00| chol  1  1
16|1.000|0.987|1.8e-14|2.3e-09|2.7e-08| 4.209705e+00  4.209705e+00| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations   = 16
primal objective value =  4.20970522e+00
dual   objective value =  4.20970521e+00
gap := trace(XZ)       = 2.75e-08
relative gap           = 2.91e-09
actual relative gap    = 1.14e-09
rel. primal infeas     = 1.76e-14
rel. dual   infeas     = 2.33e-09
norm(X), norm(y), norm(Z) = 9.0e+00, 7.2e+00, 1.6e+01
norm(A), norm(b), norm(C) = 2.6e+01, 1.1e+01, 6.7e+00
Total CPU time (secs)  = 0.38
CPU time per iteration = 0.02
termination code       =  0
DIMACS: 6.2e-14  0.0e+00  7.7e-09  0.0e+00  1.1e-09  2.9e-09
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +4.20971

Computing the solution of the least-squares problem with variable weights...

Calling SDPT3: 312 variables, 272 equality constraints
------------------------------------------------------------

num. of constraints = 272
dim. of socp   var  = 288,   num. of socp blk  = 16
dim. of linear var  = 16
dim. of free   var  =  8 *** convert ublk to lblk
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version  predcorr  gam  expon  scale_data
NT      1      0.000   1        0
it pstep dstep pinfeas dinfeas  gap      prim-obj      dual-obj    cputime
-------------------------------------------------------------------
0|0.000|0.000|3.6e+00|5.6e+00|1.7e+04| 4.223108e+02  0.000000e+00| 0:0:00| chol  1  1
1|1.000|0.977|1.0e-06|1.6e-01|5.2e+02| 4.263389e+02  4.837842e+01| 0:0:00| chol  1  1
2|0.917|1.000|2.7e-06|2.8e-03|3.9e+01| 9.206458e+01  5.377137e+01| 0:0:00| chol  1  1
3|0.967|0.900|3.1e-05|5.4e-04|3.0e+00| 6.956736e+01  6.656910e+01| 0:0:00| chol  1  1
4|0.967|0.966|3.0e-06|4.6e-05|1.0e-01| 6.825937e+01  6.815955e+01| 0:0:00| chol  1  1
5|0.978|0.906|8.7e-08|7.5e-06|6.1e-03| 6.821149e+01  6.820573e+01| 0:0:00| chol  1  1
6|0.938|0.855|1.3e-08|1.8e-06|7.9e-04| 6.820991e+01  6.820919e+01| 0:0:00| chol  1  1
7|0.767|0.718|4.9e-09|3.3e-07|2.2e-04| 6.820976e+01  6.820956e+01| 0:0:00| chol  1  1
8|0.550|0.693|3.1e-09|9.8e-08|8.1e-05| 6.820974e+01  6.820966e+01| 0:0:00| chol  1  1
9|0.669|0.595|1.9e-09|3.9e-08|3.4e-05| 6.820972e+01  6.820969e+01| 0:0:00| chol  2  2
10|0.869|0.646|8.1e-10|1.5e-08|1.1e-05| 6.820971e+01  6.820970e+01| 0:0:00| chol  1  2
11|0.983|0.774|2.4e-10|4.0e-09|2.2e-06| 6.820971e+01  6.820970e+01| 0:0:00| chol  2  2
12|0.959|0.908|5.9e-11|6.6e-10|2.1e-07| 6.820971e+01  6.820971e+01| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations   = 12
primal objective value =  6.82097053e+01
dual   objective value =  6.82097051e+01
gap := trace(XZ)       = 2.10e-07
relative gap           = 1.53e-09
actual relative gap    = 1.34e-09
rel. primal infeas     = 5.88e-11
rel. dual   infeas     = 6.58e-10
norm(X), norm(y), norm(Z) = 3.9e+00, 1.6e+01, 1.7e+01
norm(A), norm(b), norm(C) = 2.3e+01, 6.4e+00, 2.4e+01
Total CPU time (secs)  = 0.26
CPU time per iteration = 0.02
termination code       =  0
DIMACS: 1.5e-10  0.0e+00  2.7e-09  0.0e+00  1.3e-09  1.5e-09
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +4.20971

Computing the solution of the quadratic program...

Calling SDPT3: 128 variables, 56 equality constraints
For improved efficiency, SDPT3 is solving the dual problem.
------------------------------------------------------------

num. of constraints = 56
dim. of sdp    var  = 32,   num. of sdp  blk  = 16
dim. of linear var  = 80
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version  predcorr  gam  expon  scale_data
HKM      1      0.000   1        0
it pstep dstep pinfeas dinfeas  gap      prim-obj      dual-obj    cputime
-------------------------------------------------------------------
0|0.000|0.000|1.4e+01|9.3e+00|1.8e+04| 7.324334e+02  0.000000e+00| 0:0:00| chol  1  1
1|1.000|1.000|3.9e-06|9.4e-02|1.3e+03| 5.898749e+02 -6.551406e+02| 0:0:00| chol  1  1
2|0.986|0.923|2.8e-07|1.6e-02|6.6e+01| 2.708421e+01 -3.712863e+01| 0:0:00| chol  1  1
3|1.000|0.829|6.4e-08|3.5e-03|2.2e+01| 6.612363e+00 -1.492046e+01| 0:0:00| chol  1  1
4|1.000|1.000|1.2e-08|9.4e-05|9.5e+00| 8.063808e-01 -8.733407e+00| 0:0:00| chol  1  1
5|0.905|0.908|1.6e-09|1.7e-05|1.1e+00|-3.569766e+00 -4.710522e+00| 0:0:00| chol  1  1
6|1.000|1.000|3.3e-10|9.4e-07|5.2e-01|-3.918831e+00 -4.437390e+00| 0:0:00| chol  1  1
7|0.947|0.946|1.3e-10|1.4e-07|3.2e-02|-4.191363e+00 -4.223574e+00| 0:0:00| chol  1  1
8|0.982|0.986|5.6e-11|1.1e-08|7.9e-04|-4.209226e+00 -4.210015e+00| 0:0:00| chol  1  1
9|0.988|0.988|3.2e-11|1.4e-10|9.4e-06|-4.209699e+00 -4.209709e+00| 0:0:00| chol  1  1
10|0.995|1.000|1.6e-13|6.5e-12|1.4e-07|-4.209705e+00 -4.209705e+00| 0:0:00| chol  1  1
11|0.999|1.000|2.1e-11|1.0e-12|2.4e-09|-4.209705e+00 -4.209705e+00| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations   = 11
primal objective value = -4.20970521e+00
dual   objective value = -4.20970521e+00
gap := trace(XZ)       = 2.36e-09
relative gap           = 2.50e-10
actual relative gap    = 2.50e-10
rel. primal infeas     = 2.09e-11
rel. dual   infeas     = 1.00e-12
norm(X), norm(y), norm(Z) = 1.4e+01, 2.9e+00, 9.4e+00
norm(A), norm(b), norm(C) = 2.0e+01, 1.7e+01, 1.1e+01
Total CPU time (secs)  = 0.17
CPU time per iteration = 0.02
termination code       =  0
DIMACS: 7.3e-11  0.0e+00  3.8e-12  0.0e+00  2.5e-10  2.5e-10
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +4.20971

------------------------------------------------------------------------
The optimal solutions for problem formulations 1, 2 and 3 are given
respectively as follows (per column):

ans =

0.3888    0.3888    0.3888
0.1262    0.1262    0.1262
-0.3337   -0.3337   -0.3337
0.1326    0.1326    0.1326
0.5500    0.5500    0.5500
0.3526    0.3526    0.3526
-0.6562   -0.6562   -0.6562
0.8309    0.8309    0.8309

```