randn('state',0);
rand('state',0);
a = 1;
b = -5 ;
m= 100;
u = 10*rand(m,1);
y = (rand(m,1) < exp(a*u+b)./(1+exp(a*u+b)));
plot(u,y,'o')
axis([-1,11,-0.1, 1.1]);
U = [ones(m,1) u];
cvx_expert true
cvx_begin
variables x(2)
maximize(y'*U*x-sum(log_sum_exp([zeros(1,m); x'*U'])))
cvx_end
ind1 = find(y==1);
ind2 = find(y==0);
aml = x(2); bml = x(1);
us = linspace(-1,11,1000)';
ps = exp(aml*us + bml)./(1+exp(aml*us+bml));
dots = plot(us,ps,'-', u(ind1),y(ind1),'o',...
u(ind2),y(ind2),'o');
axis([-1, 11,-0.1,1.1]);
xlabel('x');
ylabel('y');
Calling Mosek 9.1.9: 600 variables, 202 equality constraints
For improved efficiency, Mosek is solving the dual problem.
------------------------------------------------------------
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 202
Cones : 200
Scalar variables : 600
Matrix variables : 0
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 2 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 202
Cones : 200
Scalar variables : 600
Matrix variables : 0
Integer variables : 0
Optimizer - threads : 8
Optimizer - solved problem : the primal
Optimizer - Constraints : 202
Optimizer - Cones : 200
Optimizer - Scalar variables : 600 conic : 600
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 703 after factor : 703
Factor - dense dim. : 0 flops : 1.03e+04
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 3.4e+01 1.3e+00 2.1e+02 0.00e+00 2.130582563e+02 0.000000000e+00 1.0e+00 0.00
1 6.1e+00 2.4e-01 2.5e+01 3.61e-01 2.485318230e+01 -3.026617046e+01 1.8e-01 0.01
2 6.9e-01 2.7e-02 1.3e+00 6.57e-01 -2.492063045e+01 -3.259121601e+01 2.1e-02 0.01
3 3.5e-02 1.4e-03 1.6e-02 9.13e-01 -3.239002363e+01 -3.279631727e+01 1.0e-03 0.01
4 3.1e-03 1.2e-04 4.3e-04 9.93e-01 -3.292581875e+01 -3.296187533e+01 9.3e-05 0.01
5 2.3e-04 8.7e-06 8.4e-06 1.00e+00 -3.297634919e+01 -3.297897289e+01 6.7e-06 0.01
6 2.1e-05 7.9e-07 2.3e-07 1.00e+00 -3.297943954e+01 -3.297967826e+01 6.1e-07 0.02
7 2.3e-06 9.0e-08 8.8e-09 1.00e+00 -3.297967636e+01 -3.297970359e+01 7.0e-08 0.02
8 3.4e-07 1.3e-08 4.8e-10 1.00e+00 -3.297969912e+01 -3.297970306e+01 1.0e-08 0.02
9 4.5e-08 1.7e-09 2.3e-11 1.00e+00 -3.297970220e+01 -3.297970272e+01 1.3e-09 0.02
10 1.9e-08 7.2e-10 6.1e-12 1.00e+00 -3.297970246e+01 -3.297970268e+01 5.6e-10 0.02
Optimizer terminated. Time: 0.02
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -3.2979702463e+01 nrm: 1e+02 Viol. con: 3e-07 var: 0e+00 cones: 0e+00
Dual. obj: -3.2979702680e+01 nrm: 5e+00 Viol. con: 0e+00 var: 0e+00 cones: 0e+00
Optimizer summary
Optimizer - time: 0.02
Interior-point - iterations : 10 time: 0.02
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): -32.9797