% "FIR Filter Design via Spectral Factorization and Convex Optimization"
% by S.-P. Wu, S. Boyd, and L. Vandenberghe
% (figures are generated)
%
% Designs an FIR lowpass filter using spectral factorization method where we:
% - minimize maximum stopband attenuation
% - have a constraint on the maximum passband ripple
%
%   minimize   max |H(w)|                      for w in the stopband
%       s.t.   1/delta <= |H(w)| <= delta      for w in the passband
%
% We change variables via spectral factorization method and get:
%
%   minimize   max R(w)                        for w in the stopband
%       s.t.   (1/delta)^2 <= R(w) <= delta^2  for w in the passband
%              R(w) >= 0                       for all w
%
% where R(w) is the squared magnited of the frequency response
% (and the Fourier transform of the autocorrelation coefficients r).
% Variables are coeffients r. delta is the allowed passband ripple.
% This is a convex problem (can be formulated as an LP after sampling).
%
% Written for CVX by Almir Mutapcic 02/02/06

%*********************************************************************
% user's filter specs (for a low-pass filter example)
%*********************************************************************
% number of FIR coefficients (including the zeroth one)
n = 20;

wpass = 0.12*pi;   % end of the passband
wstop = 0.24*pi;   % start of the stopband
delta = 1;         % maximum passband ripple in dB (+/- around 0 dB)

%*********************************************************************
% create optimization parameters
%*********************************************************************
% rule-of-thumb discretization (from Cheney's Approx. Theory book)
m = 15*n;
w = linspace(0,pi,m)'; % omega

% A is the matrix used to compute the power spectrum
% A(w,:) = [1 2*cos(w) 2*cos(2*w) ... 2*cos(n*w)]
A = [ones(m,1) 2*cos(kron(w,[1:n-1]))];

% passband 0 <= w <= w_pass
ind = find((0 <= w) & (w <= wpass));    % passband
Lp  = 10^(-delta/20)*ones(length(ind),1);
Up  = 10^(+delta/20)*ones(length(ind),1);
Ap  = A(ind,:);

% transition band is not constrained (w_pass <= w <= w_stop)

% stopband (w_stop <= w)
ind = find((wstop <= w) & (w <= pi));   % stopband
As  = A(ind,:);

%********************************************************************
% optimization
%********************************************************************
% formulate and solve the magnitude design problem
cvx_begin
  variable r(n,1)

  % this is a feasibility problem
  minimize( max( abs( As*r ) ) )
  subject to
    % passband constraints
    Ap*r >= (Lp.^2);
    Ap*r <= (Up.^2);
    % nonnegative-real constraint for all frequencies (a bit redundant)
    A*r >= 0;
cvx_end

% check if problem was successfully solved
disp(['Problem is ' cvx_status])
if ~strfind(cvx_status,'Solved')
  return
end

% compute the spectral factorization
h = spectral_fact(r);

% compute the max attenuation in the stopband (convert to original vars)
Ustop = 10*log10(cvx_optval);
fprintf(1,'The max attenuation in the stopband is %3.2f dB.\n\n',Ustop);

%*********************************************************************
% plotting routines
%*********************************************************************
% frequency response of the designed filter, where j = sqrt(-1)
H = [exp(-j*kron(w,[0:n-1]))]*h;

figure(1)
% FIR impulse response
plot([0:n-1],h','o',[0:n-1],h','b:')
xlabel('t'), ylabel('h(t)')

figure(2)
% magnitude
subplot(2,1,1)
plot(w,20*log10(abs(H)), ...
     [0 wpass],[delta delta],'r--', ...
     [0 wpass],[-delta -delta],'r--', ...
     [wstop pi],[Ustop Ustop],'r--')
xlabel('w')
ylabel('mag H(w) in dB')
axis([0 pi -50 5])
% phase
subplot(2,1,2)
plot(w,angle(H))
axis([0,pi,-pi,pi])
xlabel('w'), ylabel('phase H(w)')
 
Calling SDPT3 4.0: 1056 variables, 249 equality constraints
   For improved efficiency, SDPT3 is solving the dual problem.
------------------------------------------------------------

 num. of constraints = 249
 dim. of socp   var  = 456,   num. of socp blk  = 228
 dim. of linear var  = 600
*******************************************************************
   SDPT3: Infeasible path-following algorithms
*******************************************************************
 version  predcorr  gam  expon  scale_data
    NT      1      0.000   1        0    
it pstep dstep pinfeas dinfeas  gap      prim-obj      dual-obj    cputime
-------------------------------------------------------------------
 0|0.000|0.000|7.4e+03|8.3e+01|9.1e+05| 8.193787e+02  0.000000e+00| 0:0:00| chol  1  1 
 1|0.647|0.678|2.6e+03|2.7e+01|4.1e+05| 2.150580e+03 -2.880747e+02| 0:0:00| chol  1  1 
 2|0.706|0.844|7.7e+02|4.3e+00|1.3e+05| 2.845166e+03 -4.506275e+02| 0:0:00| chol  1  1 
 3|0.935|0.783|5.0e+01|9.5e-01|1.2e+04| 1.793761e+03 -4.604846e+02| 0:0:00| chol  1  1 
 4|0.882|1.000|5.9e+00|8.1e-03|1.9e+03| 6.197634e+02 -3.453529e+02| 0:0:00| chol  1  1 
 5|0.982|0.869|1.1e-01|1.8e-03|1.3e+02| 1.228449e+01 -1.009221e+02| 0:0:00| chol  1  1 
 6|0.990|0.937|1.0e-03|1.9e-04|1.2e+01| 1.140883e+00 -1.052448e+01| 0:0:00| chol  1  1 
 7|0.568|0.934|4.5e-04|2.3e-04|5.5e+00| 8.200442e-01 -4.634545e+00| 0:0:00| chol  1  1 
 8|0.925|0.922|3.3e-05|1.1e-04|4.8e-01| 8.625425e-02 -3.979458e-01| 0:0:00| chol  1  1 
 9|0.714|0.663|9.5e-06|4.3e-05|2.2e-01| 2.896298e-02 -1.918641e-01| 0:0:00| chol  1  1 
10|0.768|1.000|2.2e-06|1.9e-06|6.2e-02| 1.536843e-02 -4.621078e-02| 0:0:00| chol  1  1 
11|0.770|1.000|5.1e-07|4.4e-07|1.2e-02| 4.430290e-03 -7.088877e-03| 0:0:00| chol  1  1 
12|0.869|0.685|6.7e-08|2.4e-07|4.5e-03| 7.613180e-04 -3.695987e-03| 0:0:00| chol  1  1 
13|0.994|0.727|4.2e-10|7.9e-08|1.7e-03| 2.139177e-04 -1.488904e-03| 0:0:00| chol  1  1 
14|0.815|1.000|7.7e-11|8.4e-11|4.3e-04| 9.343243e-05 -3.410733e-04| 0:0:00| chol  1  1 
15|0.967|0.640|2.6e-12|4.6e-11|2.2e-04| 2.041452e-06 -2.140884e-04| 0:0:00| chol  1  2 
16|0.790|0.725|1.9e-12|1.4e-11|1.4e-04|-2.904588e-05 -1.663249e-04| 0:0:00| chol  1  1 
17|1.000|1.000|1.7e-12|1.0e-12|4.9e-05|-6.928659e-05 -1.181075e-04| 0:0:00| chol  1  2 
18|0.873|0.940|3.7e-12|1.1e-12|1.5e-05|-9.198399e-05 -1.068634e-04| 0:0:00| chol  1  1 
19|0.875|0.865|7.1e-13|1.1e-12|3.3e-06|-1.019311e-04 -1.051991e-04| 0:0:00| chol  1  2 
20|0.887|0.902|4.4e-12|1.1e-12|5.5e-07|-1.043382e-04 -1.048878e-04| 0:0:00| chol  1  1 
21|0.932|0.967|2.5e-11|1.0e-12|5.5e-08|-1.047839e-04 -1.048393e-04| 0:0:00| chol  1  1 
22|0.994|0.992|9.7e-12|1.5e-12|1.1e-09|-1.048357e-04 -1.048368e-04| 0:0:00|
  stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
 number of iterations   = 22
 primal objective value = -1.04835736e-04
 dual   objective value = -1.04836798e-04
 gap := trace(XZ)       = 1.06e-09
 relative gap           = 1.06e-09
 actual relative gap    = 1.06e-09
 rel. primal infeas (scaled problem)   = 9.68e-12
 rel. dual     "        "       "      = 1.51e-12
 rel. primal infeas (unscaled problem) = 0.00e+00
 rel. dual     "        "       "      = 0.00e+00
 norm(X), norm(y), norm(Z) = 8.6e-01, 3.1e-01, 7.4e+00
 norm(A), norm(b), norm(C) = 1.6e+02, 2.0e+00, 9.9e+00
 Total CPU time (secs)  = 0.36  
 CPU time per iteration = 0.02  
 termination code       =  0
 DIMACS: 9.7e-12  0.0e+00  6.6e-12  0.0e+00  1.1e-09  1.1e-09
-------------------------------------------------------------------
 
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +0.000104837
 
Problem is Solved
The max attenuation in the stopband is -39.79 dB.