randn('state',0);
n = 4;
A = randn(n); A = 0.5*(A'+A);
B = randn(n); B = B'*B;
c = -1;
cvx_begin sdp
variable t
minimize ( c*t )
A >= t * B;
cvx_end
disp('------------------------------------------------------------------------');
disp('The optimal t obtained is');
disp(t);
Calling Mosek 9.1.9: 10 variables, 1 equality constraints
For improved efficiency, Mosek is solving the dual problem.
------------------------------------------------------------
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 1
Cones : 0
Scalar variables : 0
Matrix variables : 1
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 2 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 1
Cones : 0
Scalar variables : 0
Matrix variables : 1
Integer variables : 0
Optimizer - threads : 8
Optimizer - solved problem : the primal
Optimizer - Constraints : 1
Optimizer - Cones : 0
Optimizer - Scalar variables : 0 conic : 0
Optimizer - Semi-definite variables: 1 scalarized : 10
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1 after factor : 1
Factor - dense dim. : 0 flops : 4.60e+02
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 2.7e+00 1.4e+00 2.2e+00 0.00e+00 1.219269963e+00 0.000000000e+00 1.0e+00 0.00
1 3.3e-01 1.8e-01 4.8e-01 -7.50e-01 -2.576084821e+00 -5.931855625e-01 1.2e-01 0.01
2 4.6e-02 2.5e-02 1.5e-01 -5.70e-01 -1.761476200e+01 -3.964947856e+00 1.7e-02 0.01
3 3.8e-03 2.1e-03 2.7e-02 -7.63e-01 -9.737046770e+01 -2.654953039e+01 1.4e-03 0.01
4 3.6e-04 1.9e-04 9.2e-04 3.13e-01 -5.883568002e+01 -4.942827837e+01 1.3e-04 0.01
5 6.3e-06 3.4e-06 1.5e-06 1.09e+00 -4.847665768e+01 -4.839880108e+01 2.4e-06 0.01
6 1.4e-08 7.6e-09 1.6e-10 1.00e+00 -4.831917654e+01 -4.831900204e+01 5.3e-09 0.01
7 1.8e-09 1.0e-09 6.8e-12 1.00e+00 -4.831899541e+01 -4.831897371e+01 6.6e-10 0.01
8 1.1e-10 3.9e-09 1.1e-13 1.00e+00 -4.831898380e+01 -4.831898242e+01 4.2e-11 0.01
9 2.1e-12 1.7e-08 2.7e-16 1.00e+00 -4.831898330e+01 -4.831898328e+01 7.7e-13 0.01
Optimizer terminated. Time: 0.02
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -4.8318983303e+01 nrm: 7e+01 Viol. con: 3e-10 barvar: 0e+00
Dual. obj: -4.8318983278e+01 nrm: 3e+02 Viol. con: 0e+00 barvar: 1e-10
Optimizer summary
Optimizer - time: 0.02
Interior-point - iterations : 9 time: 0.01
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +48.354
------------------------------------------------------------------------
The optimal t obtained is
-48.3540