randn('state',0);
n = 10;
N = 1000;
tmp = randn(n);
L = tmp*tmp';
tmp = randn(n);
U = L + tmp*tmp';
R = (L+U)/2;
y_sample = sqrtm(R)*randn(n,N);
Y = cov(y_sample');
Ui = inv(U); Ui = 0.5*(Ui+Ui');
Li = inv(L); Li = 0.5*(Li+Li');
cvx_begin sdp
variable S(n,n) symmetric
maximize( log_det(S) - trace(S*Y) );
S >= Ui;
S <= Li;
cvx_end
R_hat = inv(S);
Calling Mosek 9.1.9: 357 variables, 123 equality constraints
For improved efficiency, Mosek is solving the dual problem.
------------------------------------------------------------
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 123
Cones : 12
Scalar variables : 37
Matrix variables : 3
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 123
Cones : 12
Scalar variables : 37
Matrix variables : 3
Integer variables : 0
Optimizer - threads : 8
Optimizer - solved problem : the primal
Optimizer - Constraints : 121
Optimizer - Cones : 12
Optimizer - Scalar variables : 36 conic : 36
Optimizer - Semi-definite variables: 3 scalarized : 320
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 6142 after factor : 6168
Factor - dense dim. : 0 flops : 5.30e+05
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 2.3e+01 1.8e+01 4.5e+01 0.00e+00 3.566235231e+01 -8.051020016e+00 1.0e+00 0.00
1 6.4e+00 5.0e+00 2.1e+01 -8.78e-01 2.394570507e+01 -1.097749160e+01 2.8e-01 0.01
2 2.1e+00 1.6e+00 6.5e+00 -3.90e-01 2.827371478e+01 1.029159494e+01 9.1e-02 0.01
3 7.8e-01 6.1e-01 1.7e+00 4.38e-01 9.042150034e+00 1.059328974e+00 3.5e-02 0.01
4 3.8e-01 3.0e-01 5.7e-01 8.84e-01 -2.957770892e-03 -3.997259351e+00 1.7e-02 0.01
5 2.9e-01 2.3e-01 4.6e-01 4.91e-01 -4.618648356e+00 -8.302953751e+00 1.3e-02 0.02
6 1.1e-01 8.9e-02 9.4e-02 9.65e-01 -1.142492679e+01 -1.279830916e+01 5.1e-03 0.02
7 5.5e-02 4.3e-02 4.9e-02 3.92e-01 -1.711377817e+01 -1.807675725e+01 2.4e-03 0.02
8 1.3e-02 1.0e-02 5.4e-03 9.38e-01 -2.065061243e+01 -2.087796149e+01 5.7e-04 0.02
9 5.7e-03 4.4e-03 1.9e-03 6.74e-01 -2.207033693e+01 -2.218369709e+01 2.5e-04 0.02
10 8.1e-04 6.3e-04 1.1e-04 8.99e-01 -2.309355553e+01 -2.311041093e+01 3.6e-05 0.02
11 1.2e-04 9.4e-05 6.2e-06 1.00e+00 -2.325715332e+01 -2.325965119e+01 5.3e-06 0.02
12 2.0e-05 1.6e-05 4.2e-07 1.00e+00 -2.328108678e+01 -2.328149911e+01 8.9e-07 0.02
13 2.7e-06 2.1e-06 2.2e-08 1.00e+00 -2.328509655e+01 -2.328515061e+01 1.2e-07 0.03
14 2.8e-07 2.2e-07 7.4e-10 1.00e+00 -2.328568644e+01 -2.328569204e+01 1.2e-08 0.03
15 3.0e-08 2.3e-08 2.5e-11 1.00e+00 -2.328574902e+01 -2.328574961e+01 1.3e-09 0.03
16 3.6e-09 2.8e-09 1.1e-12 1.00e+00 -2.328575561e+01 -2.328575569e+01 1.6e-10 0.03
Optimizer terminated. Time: 0.03
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -2.3285755615e+01 nrm: 2e+02 Viol. con: 5e-08 var: 0e+00 barvar: 0e+00 cones: 0e+00
Dual. obj: -2.3285755686e+01 nrm: 2e+01 Viol. con: 0e+00 var: 1e-12 barvar: 4e-08 cones: 0e+00
Optimizer summary
Optimizer - time: 0.03
Interior-point - iterations : 16 time: 0.03
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): -30.6698