n = 100;
a = linspace(-1,1,n);
a2 = a .^ 2;
a3 = 3 * ( a.^ 3 ) - 2 * a;
ap = +( a < 0 );
A = [ a ; -a ; a2 ; -a2 ; a3 ; -a3 ; ap ; -ap ];
b = [ 0.1 ; 0.1 ;0.5 ; -0.5 ; -0.2 ; 0.3 ; 0.4 ; -0.3 ];
cvx_expert true
cvx_begin
variables pent(n)
maximize( sum(entr(pent)) )
sum(pent) == 1;
A * pent <= b;
cvx_end
Ubnds = zeros(1,n);
Lbnds = zeros(1,n);
for t = 1 : n,
cvx_begin quiet
variable p( n )
minimize sum( p(1:t) )
p >= 0;
sum( p ) == 1;
A * p <= b;
cvx_end
Lbnds(t) = cvx_optval;
cvx_begin quiet
variable p( n )
maximize sum( p(1:t) )
p >= 0;
sum( p ) == 1;
A * p <= b;
cvx_end
Ubnds(t) = cvx_optval;
disp( sprintf( '%g <= Prob(x<=%g) <= %g', Lbnds(t), a(t), Ubnds(t) ) );
end
figure( 1 )
stairs( a, pent );
xlabel( 'x' );
ylabel( 'PDF( x )' );
figure( 2 )
stairs( a, cumsum( pent ) );
grid on;
hold on
d = stairs(a, Lbnds,'r-'); set(d,'Color',[0 0.5 0]);
d = stairs(a, Ubnds,'r-'); set(d,'Color',[0 0.5 0]);
d = plot([-1,-1], [Lbnds(1), Ubnds(1)],'r-');
set(d,'Color',[0 0.5 0]);
axis([-1.1 1.1 -0.1 1.1]);
xlabel( 'x' );
ylabel( 'CDF( x )' );
hold off
Calling Mosek 9.1.9: 308 variables, 109 equality constraints
------------------------------------------------------------
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 109
Cones : 100
Scalar variables : 308
Matrix variables : 0
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 109
Cones : 100
Scalar variables : 308
Matrix variables : 0
Integer variables : 0
Optimizer - threads : 8
Optimizer - solved problem : the primal
Optimizer - Constraints : 5
Optimizer - Cones : 100
Optimizer - Scalar variables : 303 conic : 300
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 15 after factor : 15
Factor - dense dim. : 0 flops : 5.06e+03
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 8.0e+01 8.1e-01 2.1e+02 0.00e+00 8.278383991e+01 -1.290927710e+02 1.0e+00 0.00
1 9.2e+00 9.3e-02 1.2e+01 6.35e-01 -1.258106333e+01 -4.378494190e+01 1.2e-01 0.01
2 1.1e+00 1.2e-02 8.5e-01 5.78e-01 -7.925074971e+00 -1.308368634e+01 1.4e-02 0.01
3 1.9e-01 1.9e-03 6.5e-02 7.63e-01 -4.920183301e+00 -5.898967691e+00 2.4e-03 0.01
4 1.9e-02 1.9e-04 1.6e-03 1.14e+00 -4.426324685e+00 -4.514412441e+00 2.4e-04 0.01
5 1.7e-03 1.7e-05 3.9e-05 1.05e+00 -4.389622164e+00 -4.397222024e+00 2.1e-05 0.01
6 9.8e-05 9.9e-07 5.4e-07 1.01e+00 -4.386539903e+00 -4.386981889e+00 1.2e-06 0.01
7 9.9e-06 1.0e-07 1.7e-08 1.00e+00 -4.386323068e+00 -4.386367836e+00 1.2e-07 0.01
8 1.3e-06 1.3e-08 8.4e-10 1.00e+00 -4.386298489e+00 -4.386304439e+00 1.7e-08 0.01
9 1.8e-07 1.8e-09 4.1e-11 1.00e+00 -4.386294908e+00 -4.386295698e+00 2.2e-09 0.01
10 5.3e-08 5.3e-10 6.7e-12 1.00e+00 -4.386294501e+00 -4.386294738e+00 6.6e-10 0.01
11 3.2e-08 3.2e-10 3.1e-12 9.99e-01 -4.386294437e+00 -4.386294581e+00 4.0e-10 0.01
12 3.2e-08 3.2e-10 3.1e-12 1.08e+00 -4.386294436e+00 -4.386294578e+00 4.0e-10 0.01
13 3.1e-08 3.2e-10 3.0e-12 9.85e-01 -4.386294435e+00 -4.386294575e+00 3.9e-10 0.02
14 3.1e-08 3.2e-10 3.0e-12 9.97e-01 -4.386294435e+00 -4.386294575e+00 3.9e-10 0.02
15 7.6e-09 7.9e-11 3.5e-13 9.99e-01 -4.386294359e+00 -4.386294394e+00 9.7e-11 0.02
Optimizer terminated. Time: 0.02
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -4.3862943588e+00 nrm: 1e+00 Viol. con: 1e-08 var: 0e+00 cones: 0e+00
Dual. obj: -4.3862943940e+00 nrm: 5e+00 Viol. con: 0e+00 var: 6e-13 cones: 0e+00
Optimizer summary
Optimizer - time: 0.02
Interior-point - iterations : 15 time: 0.02
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +4.38629
0 <= Prob(x<=-1) <= 0.329406
0 <= Prob(x<=-0.979798) <= 0.344777
0 <= Prob(x<=-0.959596) <= 0.360771
0 <= Prob(x<=-0.939394) <= 0.377365
0 <= Prob(x<=-0.919192) <= 0.394532
0 <= Prob(x<=-0.89899) <= 0.4
0 <= Prob(x<=-0.878788) <= 0.4
0 <= Prob(x<=-0.858586) <= 0.4
0 <= Prob(x<=-0.838384) <= 0.4
0 <= Prob(x<=-0.818182) <= 0.4
0 <= Prob(x<=-0.79798) <= 0.4
0.0116304 <= Prob(x<=-0.777778) <= 0.4
0.0331953 <= Prob(x<=-0.757576) <= 0.4
0.0519157 <= Prob(x<=-0.737374) <= 0.4
0.0701091 <= Prob(x<=-0.717172) <= 0.4
0.0859495 <= Prob(x<=-0.69697) <= 0.4
0.0998612 <= Prob(x<=-0.676768) <= 0.4
0.112141 <= Prob(x<=-0.656566) <= 0.4
0.123045 <= Prob(x<=-0.636364) <= 0.4
0.132778 <= Prob(x<=-0.616162) <= 0.4
0.141527 <= Prob(x<=-0.59596) <= 0.4
0.149418 <= Prob(x<=-0.575758) <= 0.4
0.15655 <= Prob(x<=-0.555556) <= 0.4
0.163015 <= Prob(x<=-0.535354) <= 0.4
0.168895 <= Prob(x<=-0.515152) <= 0.4
0.174283 <= Prob(x<=-0.494949) <= 0.4
0.179205 <= Prob(x<=-0.474747) <= 0.4
0.18371 <= Prob(x<=-0.454545) <= 0.4
0.187841 <= Prob(x<=-0.434343) <= 0.4
0.191651 <= Prob(x<=-0.414141) <= 0.4
0.195164 <= Prob(x<=-0.393939) <= 0.4
0.198396 <= Prob(x<=-0.373737) <= 0.4
0.201373 <= Prob(x<=-0.353535) <= 0.4
0.204127 <= Prob(x<=-0.333333) <= 0.4
0.206681 <= Prob(x<=-0.313131) <= 0.4
0.209037 <= Prob(x<=-0.292929) <= 0.4
0.211209 <= Prob(x<=-0.272727) <= 0.4
0.213219 <= Prob(x<=-0.252525) <= 0.4
0.215088 <= Prob(x<=-0.232323) <= 0.4
0.216811 <= Prob(x<=-0.212121) <= 0.4
0.218398 <= Prob(x<=-0.191919) <= 0.4
0.219862 <= Prob(x<=-0.171717) <= 0.4
0.221224 <= Prob(x<=-0.151515) <= 0.4
0.222474 <= Prob(x<=-0.131313) <= 0.4
0.223619 <= Prob(x<=-0.111111) <= 0.4
0.224669 <= Prob(x<=-0.0909091) <= 0.4
0.225643 <= Prob(x<=-0.0707071) <= 0.4
0.22653 <= Prob(x<=-0.0505051) <= 0.4
0.227334 <= Prob(x<=-0.030303) <= 0.4
0.3 <= Prob(x<=-0.010101) <= 0.4
0.3 <= Prob(x<=0.010101) <= 0.778942
0.3 <= Prob(x<=0.030303) <= 0.792532
0.3 <= Prob(x<=0.0505051) <= 0.806483
0.3 <= Prob(x<=0.0707071) <= 0.819022
0.3 <= Prob(x<=0.0909091) <= 0.825
0.3 <= Prob(x<=0.111111) <= 0.83125
0.3 <= Prob(x<=0.131313) <= 0.837791
0.3 <= Prob(x<=0.151515) <= 0.841937
0.3 <= Prob(x<=0.171717) <= 0.845957
0.3 <= Prob(x<=0.191919) <= 0.850137
0.3 <= Prob(x<=0.212121) <= 0.854492
0.3 <= Prob(x<=0.232323) <= 0.859052
0.3 <= Prob(x<=0.252525) <= 0.863811
0.3 <= Prob(x<=0.272727) <= 0.868817
0.3 <= Prob(x<=0.292929) <= 0.874066
0.3 <= Prob(x<=0.313131) <= 0.877055
0.3 <= Prob(x<=0.333333) <= 0.880067
0.3 <= Prob(x<=0.353535) <= 0.883272
0.300787 <= Prob(x<=0.373737) <= 0.886687
0.307695 <= Prob(x<=0.393939) <= 0.890333
0.314397 <= Prob(x<=0.414141) <= 0.894234
0.320909 <= Prob(x<=0.434343) <= 0.898418
0.327232 <= Prob(x<=0.454545) <= 0.902981
0.333379 <= Prob(x<=0.474747) <= 0.909013
0.339323 <= Prob(x<=0.494949) <= 0.916606
0.345134 <= Prob(x<=0.515152) <= 0.925292
0.350719 <= Prob(x<=0.535354) <= 0.935184
0.356201 <= Prob(x<=0.555556) <= 0.946304
0.361491 <= Prob(x<=0.575758) <= 0.958921
0.366603 <= Prob(x<=0.59596) <= 0.973265
0.371622 <= Prob(x<=0.616162) <= 0.989508
0.387329 <= Prob(x<=0.636364) <= 1
0.410495 <= Prob(x<=0.656566) <= 1
0.439031 <= Prob(x<=0.676768) <= 1
0.466372 <= Prob(x<=0.69697) <= 1
0.492663 <= Prob(x<=0.717172) <= 1
0.518025 <= Prob(x<=0.737374) <= 1
0.542592 <= Prob(x<=0.757576) <= 1
0.56651 <= Prob(x<=0.777778) <= 1
0.589941 <= Prob(x<=0.79798) <= 1
0.613125 <= Prob(x<=0.818182) <= 1
0.635881 <= Prob(x<=0.838384) <= 1
0.657609 <= Prob(x<=0.858586) <= 1
0.678314 <= Prob(x<=0.878788) <= 1
0.697846 <= Prob(x<=0.89899) <= 1
0.716238 <= Prob(x<=0.919192) <= 1
0.733536 <= Prob(x<=0.939394) <= 1
0.74974 <= Prob(x<=0.959596) <= 1
0.764914 <= Prob(x<=0.979798) <= 1
1 <= Prob(x<=1) <= 1