rand('state',1)
L = 20;
n = 10;
k = 7;
A = double(rand(L,n) <= k/L);
c = 0.9*rand(L,1)+0.1;
cvx_begin
variable x(n);
maximize(sum(log(x)))
subject to
A*x <= c
cvx_end
primal_obj = cvx_optval;
cvx_begin
variable lambda(L);
minimize(c'*lambda-sum(log(A'*lambda))-n)
subject to
lambda >= 0
cvx_end
dual_obj = cvx_optval;
Calling Mosek 9.1.9: 50 variables, 20 equality constraints
For improved efficiency, Mosek is solving the dual problem.
------------------------------------------------------------
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 20
Cones : 10
Scalar variables : 50
Matrix variables : 0
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 20
Cones : 10
Scalar variables : 50
Matrix variables : 0
Integer variables : 0
Optimizer - threads : 8
Optimizer - solved problem : the primal
Optimizer - Constraints : 10
Optimizer - Cones : 10
Optimizer - Scalar variables : 49 conic : 30
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 52 after factor : 55
Factor - dense dim. : 0 flops : 7.55e+02
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+00 1.3e+00 1.7e+01 0.00e+00 8.278383991e+00 -8.051020016e+00 1.0e+00 0.00
1 2.1e-01 2.8e-01 2.9e+00 2.87e-01 -3.157713889e+00 -8.315506970e+00 2.1e-01 0.01
2 6.3e-02 8.1e-02 7.5e-01 3.00e-01 -1.237083427e+01 -1.465211143e+01 6.3e-02 0.01
3 1.8e-02 2.3e-02 1.6e-01 4.37e-01 -1.706552868e+01 -1.787110868e+01 1.8e-02 0.01
4 4.7e-03 6.0e-03 3.6e-02 2.70e-01 -2.220507185e+01 -2.246468998e+01 4.7e-03 0.01
5 1.5e-03 2.0e-03 1.1e-02 2.77e-01 -2.568238728e+01 -2.576076982e+01 1.5e-03 0.01
6 7.1e-04 9.2e-04 4.1e-03 4.21e-01 -2.760699433e+01 -2.763802049e+01 7.1e-04 0.01
7 2.3e-04 3.0e-04 1.1e-03 3.58e-01 -2.972331617e+01 -2.971788577e+01 2.3e-04 0.01
8 5.8e-05 7.5e-05 1.6e-04 6.69e-01 -3.093360885e+01 -3.092920312e+01 5.8e-05 0.01
9 9.8e-06 1.3e-05 1.2e-05 7.83e-01 -3.144305741e+01 -3.144165005e+01 9.8e-06 0.01
10 1.0e-06 1.3e-06 4.3e-07 9.26e-01 -3.155529396e+01 -3.155512065e+01 1.0e-06 0.01
11 5.0e-08 6.5e-08 4.6e-09 9.95e-01 -3.156784240e+01 -3.156783424e+01 5.0e-08 0.01
12 2.3e-09 2.9e-09 4.4e-11 1.00e+00 -3.156844427e+01 -3.156844390e+01 2.3e-09 0.01
13 9.7e-10 1.5e-10 5.1e-13 1.00e+00 -3.156847039e+01 -3.156847037e+01 1.2e-10 0.01
Optimizer terminated. Time: 0.01
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -3.1568470391e+01 nrm: 1e+02 Viol. con: 2e-08 var: 0e+00 cones: 0e+00
Dual. obj: -3.1568470372e+01 nrm: 4e+00 Viol. con: 0e+00 var: 3e-09 cones: 0e+00
Optimizer summary
Optimizer - time: 0.01
Interior-point - iterations : 13 time: 0.01
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): -31.5685
Calling Mosek 9.1.9: 50 variables, 20 equality constraints
------------------------------------------------------------
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 20
Cones : 10
Scalar variables : 50
Matrix variables : 0
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 20
Cones : 10
Scalar variables : 50
Matrix variables : 0
Integer variables : 0
Optimizer - threads : 8
Optimizer - solved problem : the primal
Optimizer - Constraints : 10
Optimizer - Cones : 10
Optimizer - Scalar variables : 49 conic : 30
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 52 after factor : 55
Factor - dense dim. : 0 flops : 7.55e+02
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.3e+00 1.3e+00 1.7e+01 0.00e+00 8.278383991e+00 -8.051020016e+00 1.0e+00 0.00
1 3.5e-01 3.5e-01 3.5e+00 3.60e-01 -1.169494809e+00 -7.226720530e+00 2.7e-01 0.01
2 1.0e-01 1.0e-01 7.7e-01 4.67e-01 -7.476063176e+00 -9.804368299e+00 7.8e-02 0.01
3 2.2e-02 2.2e-02 1.3e-01 3.96e-01 -1.333050977e+01 -1.403979521e+01 1.7e-02 0.01
4 6.1e-03 6.1e-03 3.1e-02 3.44e-01 -1.730681432e+01 -1.755889154e+01 4.8e-03 0.01
5 2.5e-03 2.5e-03 9.6e-03 5.18e-01 -1.913989375e+01 -1.925570993e+01 1.9e-03 0.01
6 1.1e-03 1.1e-03 3.3e-03 5.83e-01 -2.015551973e+01 -2.021583465e+01 8.8e-04 0.01
7 3.0e-04 3.0e-04 5.5e-04 5.97e-01 -2.113500614e+01 -2.115119697e+01 2.3e-04 0.01
8 5.5e-05 5.5e-05 4.5e-05 8.90e-01 -2.147936914e+01 -2.148240473e+01 4.3e-05 0.01
9 5.9e-06 5.9e-06 1.6e-06 9.52e-01 -2.155850930e+01 -2.155883288e+01 4.6e-06 0.01
10 3.2e-07 3.2e-07 2.1e-08 9.93e-01 -2.156792719e+01 -2.156794460e+01 2.5e-07 0.01
11 1.8e-08 1.8e-08 2.8e-10 9.99e-01 -2.156844027e+01 -2.156844125e+01 1.4e-08 0.01
12 4.7e-09 3.2e-09 2.1e-11 9.99e-01 -2.156846592e+01 -2.156846609e+01 2.5e-09 0.01
Optimizer terminated. Time: 0.02
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -2.1568465918e+01 nrm: 5e+01 Viol. con: 4e-08 var: 0e+00 cones: 0e+00
Dual. obj: -2.1568466092e+01 nrm: 3e+00 Viol. con: 0e+00 var: 2e-08 cones: 0e+00
Optimizer summary
Optimizer - time: 0.02
Interior-point - iterations : 12 time: 0.01
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): -31.5685