n = 20;
m = 15*n;
w = linspace(0,pi,m)';
D = 8.25;
Hdes = exp(-j*D*w);
A = exp( -j*kron(w,[0:n-1]) );
cvx_begin
variable h(n,1)
minimize( max( abs( A*h - Hdes ) ) )
cvx_end
disp(['Problem is ' cvx_status])
if ~strfind(cvx_status,'Solved')
h = [];
end
figure(1)
stem([0:n-1],h)
xlabel('n')
ylabel('h(n)')
H = [exp(-j*kron(w,[0:n-1]))]*h;
figure(2)
subplot(2,1,1);
plot(w,20*log10(abs(H)),w,20*log10(abs(Hdes)),'--')
xlabel('w')
ylabel('mag H in dB')
axis([0 pi -30 10])
legend('optimized','desired','Location','SouthEast')
subplot(2,1,2)
plot(w,angle(H))
axis([0,pi,-pi,pi])
xlabel('w'), ylabel('phase H(w)')
Calling Mosek 9.1.9: 1199 variables, 321 equality constraints
For improved efficiency, Mosek is solving the dual problem.
------------------------------------------------------------
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col '' (990) of matrix 'A'.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col '' (1059) of matrix 'A'.
MOSEK warning 710: #6 (nearly) zero elements are specified in sparse col '' (1197) of matrix 'A'.
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 321
Cones : 300
Scalar variables : 1199
Matrix variables : 0
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 321
Cones : 300
Scalar variables : 1199
Matrix variables : 0
Integer variables : 0
Optimizer - threads : 8
Optimizer - solved problem : the primal
Optimizer - Constraints : 21
Optimizer - Cones : 300
Optimizer - Scalar variables : 899 conic : 899
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 231 after factor : 231
Factor - dense dim. : 0 flops : 3.82e+05
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 3.0e+02 1.0e+00 1.0e+00 0.00e+00 0.000000000e+00 0.000000000e+00 1.0e+00 0.01
1 3.7e+01 1.2e-01 3.0e-02 -7.74e-02 -9.404267175e-01 -1.027139074e+00 1.2e-01 0.01
2 1.4e+01 4.7e-02 9.1e-03 2.82e+00 -6.722914608e-01 -6.681299006e-01 4.7e-02 0.01
3 2.0e+00 6.8e-03 4.8e-04 1.05e+00 -7.106031190e-01 -7.103719672e-01 6.8e-03 0.02
4 4.2e-02 1.4e-04 1.4e-06 1.02e+00 -7.071883645e-01 -7.071789603e-01 1.4e-04 0.02
5 8.1e-05 2.7e-07 1.2e-10 1.00e+00 -7.071069665e-01 -7.071069484e-01 2.7e-07 0.02
6 1.4e-07 4.7e-10 9.1e-15 1.00e+00 -7.071067815e-01 -7.071067815e-01 4.7e-10 0.02
7 2.4e-10 1.2e-10 4.0e-17 1.00e+00 -7.071067812e-01 -7.071067812e-01 1.0e-12 0.02
Optimizer terminated. Time: 0.02
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -7.0710678116e-01 nrm: 1e+00 Viol. con: 2e-10 var: 0e+00 cones: 0e+00
Dual. obj: -7.0710678119e-01 nrm: 9e-01 Viol. con: 0e+00 var: 7e-13 cones: 0e+00
Optimizer summary
Optimizer - time: 0.02
Interior-point - iterations : 7 time: 0.02
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +0.707107
Problem is Solved