% This script constructs a random equality-constrained norm minimization
% problem and solves it using CVX. You can also change p to +2 or +Inf
% to produce different results. Alternatively, you an replace
%     norm( A * x - b, p )
% with
%     norm_largest( A * x - b, 'largest', p )
% for 1 <= p <= 2 * n.

% Generate data
p = 1;
n = 10; m = 2*n; q=0.5*n;
A = randn(m,n);
b = randn(m,1);
C = randn(q,n);
d = randn(q,1);

% Create and solve problem
cvx_begin
   variable x(n)
   dual variable y
   minimize( norm( A * x - b, p ) )
   subject to
        y : C * x == d;
cvx_end

% Display results
disp( sprintf( 'norm(A*x-b,%g):', p ) );
disp( [ '   ans   =   ', sprintf( '%7.4f', norm(A*x-b,p) ) ] );
disp( 'Optimal vector:' );
disp( [ '   x     = [ ', sprintf( '%7.4f ', x ), ']' ] );
disp( 'Residual vector:' );
disp( [ '   A*x-b = [ ', sprintf( '%7.4f ', A*x-b ), ']' ] );
disp( 'Equality constraints:' );
disp( [ '   C*x   = [ ', sprintf( '%7.4f ', C*x ), ']' ] );
disp( [ '   d     = [ ', sprintf( '%7.4f ', d   ), ']' ] );
disp( 'Lagrange multiplier for C*x==d:' );
disp( [ '   y     = [ ', sprintf( '%7.4f ', y ), ']' ] );
 
Calling Mosek 9.1.9: 50 variables, 25 equality constraints
------------------------------------------------------------

MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86

Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 25              
  Cones                  : 20              
  Scalar variables       : 50              
  Matrix variables       : 0               
  Integer variables      : 0               

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries                  : 1                 time                   : 0.00            
Lin. dep.  - tries                  : 1                 time                   : 0.00            
Lin. dep.  - number                 : 0               
Presolve terminated. Time: 0.00    
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 25              
  Cones                  : 20              
  Scalar variables       : 50              
  Matrix variables       : 0               
  Integer variables      : 0               

Optimizer  - threads                : 8               
Optimizer  - solved problem         : the dual        
Optimizer  - Constraints            : 10
Optimizer  - Cones                  : 1
Optimizer  - Scalar variables       : 26                conic                  : 6               
Optimizer  - Semi-definite variables: 0                 scalarized             : 0               
Factor     - setup time             : 0.00              dense det. time        : 0.00            
Factor     - ML order time          : 0.00              GP order time          : 0.00            
Factor     - nonzeros before factor : 55                after factor           : 55              
Factor     - dense dim.             : 0                 flops                  : 3.24e+03        
ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME  
0   4.7e+00  5.0e-01  1.0e+00  0.00e+00   0.000000000e+00   0.000000000e+00   1.0e+00  0.00  
1   2.1e+00  2.2e-01  3.7e-01  5.23e-01   8.995908369e+00   9.101440402e+00   4.5e-01  0.01  
2   7.3e-01  7.9e-02  8.5e-02  5.56e-01   1.513297553e+01   1.519314926e+01   1.6e-01  0.01  
3   2.0e-01  2.2e-02  1.3e-02  8.32e-01   1.857830332e+01   1.859836215e+01   4.3e-02  0.01  
4   5.0e-02  5.3e-03  1.6e-03  9.67e-01   1.931299152e+01   1.931828674e+01   1.1e-02  0.01  
5   8.9e-03  9.5e-04  1.2e-04  9.90e-01   1.958240321e+01   1.958345811e+01   1.9e-03  0.01  
6   1.2e-04  1.3e-05  2.0e-07  9.98e-01   1.963656797e+01   1.963658262e+01   2.6e-05  0.01  
7   1.6e-10  1.8e-11  3.0e-16  1.00e+00   1.963729329e+01   1.963729329e+01   3.5e-11  0.01  
Optimizer terminated. Time: 0.01    


Interior-point solution summary
  Problem status  : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal.  obj: 1.9637293285e+01    nrm: 3e+00    Viol.  con: 8e-11    var: 0e+00    cones: 9e-11  
  Dual.    obj: 1.9637293285e+01    nrm: 4e+00    Viol.  con: 0e+00    var: 4e-15    cones: 0e+00  
Optimizer summary
  Optimizer                 -                        time: 0.01    
    Interior-point          - iterations : 7         time: 0.01    
      Basis identification  -                        time: 0.00    
        Primal              - iterations : 0         time: 0.00    
        Dual                - iterations : 0         time: 0.00    
        Clean primal        - iterations : 0         time: 0.00    
        Clean dual          - iterations : 0         time: 0.00    
    Simplex                 -                        time: 0.00    
      Primal simplex        - iterations : 0         time: 0.00    
      Dual simplex          - iterations : 0         time: 0.00    
    Mixed integer           - relaxations: 0         time: 0.00    

------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +19.6373
 
norm(A*x-b,1):
   ans   =   19.6373
Optimal vector:
   x     = [  0.0454  0.7771 -0.4288 -0.2071 -0.6081  0.0065 -0.0013  0.0645 -0.3340 -0.6522 ]
Residual vector:
   A*x-b = [ -0.0000 -1.0527 -0.7833  1.6843  0.1257  2.5993  1.2661 -0.0000  0.2758 -1.6365 -0.9791  2.6851  0.8774 -0.8686  0.0000  1.6512 -0.0000  1.5824  0.0000  1.5699 ]
Equality constraints:
   C*x   = [ -1.0290  0.2431 -1.2566 -0.3472 -0.9414 ]
   d     = [ -1.0290  0.2431 -1.2566 -0.3472 -0.9414 ]
Lagrange multiplier for C*x==d:
   y     = [ -3.6360  3.0466 -2.1301 -1.2477  0.1630 ]