echo on

n = 10;
A = randn(2*n,n);
b = randn(2*n,1);
c = randn(n,1);
d = randn;
cvx_begin
   variable x(n)
   dual variables y z
   minimize( c' * x + d )
   subject to
      y : A * x <= b;
cvx_end

echo off
n = 10;
A = randn(2*n,n);
b = randn(2*n,1);
c = randn(n,1);
d = randn;
cvx_begin
   variable x(n)
   dual variables y z
   minimize( c' * x + d )
   subject to
      y : A * x <= b;
cvx_end
 
Calling Mosek 9.1.9: 20 variables, 10 equality constraints
   For improved efficiency, Mosek is solving the dual problem.
------------------------------------------------------------

MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86

Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : LO (linear optimization problem)
  Constraints            : 10              
  Cones                  : 0               
  Scalar variables       : 20              
  Matrix variables       : 0               
  Integer variables      : 0               

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries                  : 1                 time                   : 0.00            
Lin. dep.  - tries                  : 1                 time                   : 0.00            
Lin. dep.  - number                 : 0               
Presolve terminated. Time: 0.00    
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : LO (linear optimization problem)
  Constraints            : 10              
  Cones                  : 0               
  Scalar variables       : 20              
  Matrix variables       : 0               
  Integer variables      : 0               

Optimizer  - threads                : 8               
Optimizer  - solved problem         : the primal      
Optimizer  - Constraints            : 10
Optimizer  - Cones                  : 0
Optimizer  - Scalar variables       : 20                conic                  : 0               
Optimizer  - Semi-definite variables: 0                 scalarized             : 0               
Factor     - setup time             : 0.00              dense det. time        : 0.00            
Factor     - ML order time          : 0.00              GP order time          : 0.00            
Factor     - nonzeros before factor : 55                after factor           : 55              
Factor     - dense dim.             : 0                 flops                  : 2.58e+03        
ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME  
0   1.2e+01  8.9e+00  1.2e+01  0.00e+00   3.390345787e+00   0.000000000e+00   8.0e+00  0.00  
1   1.5e+00  1.2e+00  1.7e+00  -7.79e-01  -2.769649874e+00  -2.917904931e+00  1.1e+00  0.01  
2   4.2e-01  3.2e-01  4.5e-01  7.81e-01   -2.784207412e+00  -3.114199656e+00  2.9e-01  0.01  
3   9.8e-02  7.6e-02  1.1e-01  1.28e+00   -1.097543070e+00  -1.178245652e+00  6.7e-02  0.01  
4   5.0e-03  3.9e-03  5.4e-03  1.44e+00   -7.526682482e-01  -7.557845904e-01  3.4e-03  0.01  
5   7.3e-04  5.7e-04  7.9e-04  1.01e+00   -7.519727476e-01  -7.524329845e-01  5.1e-04  0.01  
6   8.2e-06  6.3e-06  8.8e-06  1.02e+00   -7.523030009e-01  -7.523084849e-01  5.6e-06  0.01  
7   1.1e-09  8.4e-10  1.2e-09  1.00e+00   -7.522718552e-01  -7.522718558e-01  7.5e-10  0.01  
Basis identification started.
Primal basis identification phase started.
Primal basis identification phase terminated. Time: 0.00
Dual basis identification phase started.
Dual basis identification phase terminated. Time: 0.00
Basis identification terminated. Time: 0.00
Optimizer terminated. Time: 0.01    


Interior-point solution summary
  Problem status  : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal.  obj: -7.5227185516e-01   nrm: 2e+00    Viol.  con: 2e-09    var: 0e+00  
  Dual.    obj: -7.5227185582e-01   nrm: 1e+01    Viol.  con: 0e+00    var: 4e-10  

Basic solution summary
  Problem status  : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal.  obj: -7.5227185171e-01   nrm: 2e+00    Viol.  con: 8e-16    var: 0e+00  
  Dual.    obj: -7.5227185582e-01   nrm: 1e+01    Viol.  con: 0e+00    var: 2e-10  
Optimizer summary
  Optimizer                 -                        time: 0.01    
    Interior-point          - iterations : 7         time: 0.01    
      Basis identification  -                        time: 0.00    
        Primal              - iterations : 0         time: 0.00    
        Dual                - iterations : 0         time: 0.00    
        Clean primal        - iterations : 0         time: 0.00    
        Clean dual          - iterations : 0         time: 0.00    
    Simplex                 -                        time: 0.00    
      Primal simplex        - iterations : 0         time: 0.00    
      Dual simplex          - iterations : 0         time: 0.00    
    Mixed integer           - relaxations: 0         time: 0.00    

------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): -0.188114
 

echo off