echo on n = 10; A = randn(2*n,n); b = randn(2*n,1); c = randn(n,1); d = randn; cvx_begin variable x(n) dual variables y z minimize( c' * x + d ) subject to y : A * x <= b; cvx_end echo off
n = 10; A = randn(2*n,n); b = randn(2*n,1); c = randn(n,1); d = randn; cvx_begin variable x(n) dual variables y z minimize( c' * x + d ) subject to y : A * x <= b; cvx_end Calling Mosek 9.1.9: 20 variables, 10 equality constraints For improved efficiency, Mosek is solving the dual problem. ------------------------------------------------------------ MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15) Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com Platform: MACOSX/64-X86 Problem Name : Objective sense : min Type : LO (linear optimization problem) Constraints : 10 Cones : 0 Scalar variables : 20 Matrix variables : 0 Integer variables : 0 Optimizer started. Presolve started. Linear dependency checker started. Linear dependency checker terminated. Eliminator started. Freed constraints in eliminator : 0 Eliminator terminated. Eliminator - tries : 1 time : 0.00 Lin. dep. - tries : 1 time : 0.00 Lin. dep. - number : 0 Presolve terminated. Time: 0.00 Problem Name : Objective sense : min Type : LO (linear optimization problem) Constraints : 10 Cones : 0 Scalar variables : 20 Matrix variables : 0 Integer variables : 0 Optimizer - threads : 8 Optimizer - solved problem : the primal Optimizer - Constraints : 10 Optimizer - Cones : 0 Optimizer - Scalar variables : 20 conic : 0 Optimizer - Semi-definite variables: 0 scalarized : 0 Factor - setup time : 0.00 dense det. time : 0.00 Factor - ML order time : 0.00 GP order time : 0.00 Factor - nonzeros before factor : 55 after factor : 55 Factor - dense dim. : 0 flops : 2.58e+03 ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME 0 1.2e+01 8.9e+00 1.2e+01 0.00e+00 3.390345787e+00 0.000000000e+00 8.0e+00 0.00 1 1.5e+00 1.2e+00 1.7e+00 -7.79e-01 -2.769649874e+00 -2.917904931e+00 1.1e+00 0.01 2 4.2e-01 3.2e-01 4.5e-01 7.81e-01 -2.784207412e+00 -3.114199656e+00 2.9e-01 0.01 3 9.8e-02 7.6e-02 1.1e-01 1.28e+00 -1.097543070e+00 -1.178245652e+00 6.7e-02 0.01 4 5.0e-03 3.9e-03 5.4e-03 1.44e+00 -7.526682482e-01 -7.557845904e-01 3.4e-03 0.01 5 7.3e-04 5.7e-04 7.9e-04 1.01e+00 -7.519727476e-01 -7.524329845e-01 5.1e-04 0.01 6 8.2e-06 6.3e-06 8.8e-06 1.02e+00 -7.523030009e-01 -7.523084849e-01 5.6e-06 0.01 7 1.1e-09 8.4e-10 1.2e-09 1.00e+00 -7.522718552e-01 -7.522718558e-01 7.5e-10 0.01 Basis identification started. Primal basis identification phase started. Primal basis identification phase terminated. Time: 0.00 Dual basis identification phase started. Dual basis identification phase terminated. Time: 0.00 Basis identification terminated. Time: 0.00 Optimizer terminated. Time: 0.01 Interior-point solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: -7.5227185516e-01 nrm: 2e+00 Viol. con: 2e-09 var: 0e+00 Dual. obj: -7.5227185582e-01 nrm: 1e+01 Viol. con: 0e+00 var: 4e-10 Basic solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: -7.5227185171e-01 nrm: 2e+00 Viol. con: 8e-16 var: 0e+00 Dual. obj: -7.5227185582e-01 nrm: 1e+01 Viol. con: 0e+00 var: 2e-10 Optimizer summary Optimizer - time: 0.01 Interior-point - iterations : 7 time: 0.01 Basis identification - time: 0.00 Primal - iterations : 0 time: 0.00 Dual - iterations : 0 time: 0.00 Clean primal - iterations : 0 time: 0.00 Clean dual - iterations : 0 time: 0.00 Simplex - time: 0.00 Primal simplex - iterations : 0 time: 0.00 Dual simplex - iterations : 0 time: 0.00 Mixed integer - relaxations: 0 time: 0.00 ------------------------------------------------------------ Status: Solved Optimal value (cvx_optval): -0.188114 echo off