m = 150;
n = 10;
seed = 0;
randn('state',seed);
A = randn(m,n);
b = randn(m,1);
fprintf(1, ['Starting with an infeasible set of %d inequalities ' ...
'in %d variables.\n'],m,n);
cvx_begin
variables lambda(m)
minimize( sum( lambda ) )
subject to
A'*lambda == 0;
b'*lambda == -1;
lambda >= 0;
cvx_end
infeas_set = find( abs(b.*lambda) > sqrt(eps)/n );
disp(' ');
fprintf(1,'Found a smaller set of %d mutually inconsistent inequalities.\n',...
length(infeas_set));
disp(' ');
disp('A smaller set of mutually inconsistent inequalities are the ones');
disp('with row indices:'), infeas_set'
Starting with an infeasible set of 150 inequalities in 10 variables.
Calling Mosek 9.1.9: 150 variables, 11 equality constraints
------------------------------------------------------------
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86
Problem
Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 11
Cones : 0
Scalar variables : 150
Matrix variables : 0
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 11
Cones : 0
Scalar variables : 150
Matrix variables : 0
Integer variables : 0
Optimizer - threads : 8
Optimizer - solved problem : the primal
Optimizer - Constraints : 11
Optimizer - Cones : 0
Optimizer - Scalar variables : 150 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 66 after factor : 66
Factor - dense dim. : 0 flops : 2.03e+04
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 2.4e+01 1.3e+00 3.4e+02 0.00e+00 1.796106379e+02 0.000000000e+00 3.5e+00 0.00
1 2.7e-01 1.4e-02 3.8e+00 6.32e-01 2.425004055e+00 1.503802157e-02 4.0e-02 0.01
2 1.1e-01 6.0e-03 1.6e+00 7.03e-01 1.635730887e+00 4.738650042e-01 1.7e-02 0.01
3 3.5e-02 1.9e-03 5.0e-01 9.39e-01 8.839725117e-01 5.194776806e-01 5.2e-03 0.01
4 1.1e-02 5.9e-04 1.6e-01 9.42e-01 6.965762866e-01 5.792625116e-01 1.6e-03 0.01
5 6.4e-03 3.4e-04 9.1e-02 1.01e+00 6.560872319e-01 5.883159430e-01 9.5e-04 0.01
6 1.4e-03 7.6e-05 2.0e-02 9.93e-01 6.133257838e-01 5.980951257e-01 2.1e-04 0.01
7 8.4e-05 4.4e-06 1.2e-03 9.98e-01 6.020614393e-01 6.011793223e-01 1.2e-05 0.01
8 7.6e-08 3.9e-09 1.1e-06 1.00e+00 6.013126376e-01 6.013118411e-01 1.1e-08 0.01
9 7.6e-12 3.9e-13 1.1e-10 1.00e+00 6.013119804e-01 6.013119803e-01 1.1e-12 0.01
Basis identification started.
Primal basis identification phase started.
Primal basis identification phase terminated. Time: 0.00
Dual basis identification phase started.
Dual basis identification phase terminated. Time: 0.00
Basis identification terminated. Time: 0.00
Optimizer terminated. Time: 0.01
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 6.0131198040e-01 nrm: 1e+00 Viol. con: 2e-11 var: 0e+00
Dual. obj: 6.0131198032e-01 nrm: 4e+00 Viol. con: 0e+00 var: 2e-13
Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 6.0131198034e-01 nrm: 1e+00 Viol. con: 1e-16 var: 0e+00
Dual. obj: 6.0131198032e-01 nrm: 4e+00 Viol. con: 0e+00 var: 4e-16
Optimizer summary
Optimizer - time: 0.01
Interior-point - iterations : 9 time: 0.01
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +0.601312
Found a smaller set of 11 mutually inconsistent inequalities.
A smaller set of mutually inconsistent inequalities are the ones
with row indices:
ans =
1 22 33 54 59 73 79 94 115 136 149